Correspondence,

Tables of Maximally Flat Impedance-Transforming Networks of Low-Pass-Filter Form

In previous papers, Szentirmai [1] and Matthaei [2] present design theory for synthesis of lumped-element Chebyshev impedance transforming networks. In the paper of Matthaei [2] extensive tables of element values for the impedance-transforming networks are also presented. These networks are of low-pass ladder form consisting of series inductances and shunt capacitances. They give impedance match in the Chebyshev sense between resistor terminations of arbitrary ratio (designs with resistor termination ratios from 1.5 to 50 are tabulated). The responses of these networks have moderately high attenuation at dc (the amount of attenuation depends on the termination ratio); their attenuation falls to a very low level in the impedance-matching band, and then rises monotonically and steeply above the operating band in a manner typical of low-pass filters. The impedance-transforming networks can be realized in lumped-element form for low-frequency applications, and in semi-lumped-element form (using short sections of transmission line of alternating high and low impedances) at microwave frequencies.

In this correspondence the design tables Matthaei are extended to include imof pedance-matching filter designs having a maximally-flat transmission characteristic in the matching band. Figure 1 shows the general form of the impedance-transforming structures under consideration. It should be noted that the structure is of the form of a conventional low-pass filter structure. The main difference between these structures and those of conventional low-pass filters is that conventional low-pass filters have terminating resistors of equal (or nearly equal) sizes at each end. For the filters discussed here, the terminating resistors may be of radically different size, which means there will be a sizable reflection loss at zero frequency. As a result of this sizable attenuation $L_{A_{de}}$ at zero frequency, the transmission characteristics of maximally flat filters of this type have the form in Fig. 2. The maximally flat matching band extends from the lower and upper frequencies of 3-dB attenuation, ω_a' and ω_b' , respectively.¹

Note that the matching band is not symmetrical about ω_0' , the frequency of maximum flatness. However, for narrow to moderate bandwidths, the matching band reasonably approximates a symmetrical response in the sense that $\omega_m' \approx \omega_0'$. Above ω_h' , the attenuation rises steeply in a manner typical of low-pass filter structures. The attenuation L_4 indicated in Fig. 2 is trans-

Fig. 1. Definition of normalized prototype element values for impedance-transforming networks of low pass filter form. (The tabulated element values are normalized so that $g_0 = 1$ and $\omega_b' = 1$, as in Fig. 2.)

or

Fig. 2. Definition of response parameters for low-pass impedance-transforming filters. (The frequency scale for the tabulated design is normalized so that $\omega_b'=1$, as indicated above.)

ducer attenuation expressed in decibels, i.e., it is the ratio of the available power of the generator to the power delivered to the load, expressed in decibels.

Parameters of the Attenuation Characteristics

The frequency scale of the networks tabulated herein has been normalized as indicated in Fig. 2 so that

$$'=1$$
 (1)

where $\omega_b{}^\prime$ is the upper frequency of 3-dB attenuation, and

 ω_h

$$\omega_m' = \frac{\omega_b' + \omega_a'}{2} \tag{2}$$

where ω_m' is the arithmetic mean of the upper and lower frequencies of 3-dB attenuation.² The frequency variables and element values used in the normalized prototype circuits will be primed to indicate that they are normalized, and corresponding unprimed quantities will be reserved for the same parameters scaled to suit specific applications. With the normalization in (1) and (2), the fractional bandwidth w is given by³

$$w = \frac{\omega_b' - \omega_a'}{\omega_m'} \tag{3}$$

and the lower 3-dB frequency is given by

$$\omega_a{}' = 1 - w\omega_m{}' \tag{4}$$

$$\omega_a' = \frac{1 - \frac{w}{2}}{1 + \frac{w}{2}} \,. \tag{5}$$

The attenuation $L_{A_{de}}$ at zero frequency is given by

$$L_{A_{\rm dc}} = 10 \log_{10} \frac{(r+1)^2}{4r} \,\mathrm{dB} \tag{6}$$

where r is again the impedance or admittance transformation ratio.

In some cases it will be desired to determine the attenuation accurately over a range of frequencies, possibly for making use of the strong attenuation band of this type of structure above frequency ω_b' . The attenuation characteristic in Fig. 2 is given by the expression

$$L_A(\omega') = 10 \log_{10} \left\{ 1 + A \left[(\omega'^2 - \omega_0'^2) \right]^n \right\}$$
(7)

where *n* is even and equal to the number of reactive elements in the impedance-transforming filter. The frequency ω_0' at which the attenuation is maximally flat is given by

$$\omega_0' = \left\{ 1 + \sqrt[n]{\frac{4r}{(r-1)^2}} \right\}^{-1/2}.$$
 (8)

The constant A is related to ω_0' and the impedance ratio r by

$$A = \frac{(r-1)^2}{4r} (\omega_0')^{-2n}.$$
 (9)

The fractional bandwidth, w, is given in graphical form in Fig. 3. Note in Fig. 3 that w is undefined for r less than 5.83, since in these cases L_{Ade} is less than 3 dB. (Use of the graph of Fig. 3 will be explained by means of an example given later.)

⁸ For L_{Ade} less than 3 dB, w is undefined.

Manuscript received December 16, 1964. This work was supported by the U. S. Army Electronics Command Laboratories, Fort Monmouth, N. J., under Contract No. DA 36-039-AMC-00084(E). ¹ The attenuation at ω_a' and ω_b' is in fact 3.0103 dB. For the cases where L_{Ada} is less than 3.01 dB, ω_a' is undefined.

² For L_{Ade} less than 3 dB, ω_m' is undefined.

Fig. 3. Fractional bandwidth vs. impedance transformation ratios.

Table 2

	ω'_0 VS. r AND n							
				ω				
r,	n	2	4	6	8	10		
1,	5	0 41173	0 55785	0 60876	0 63401	0 64901		
2	0	0.51108	0 61064	0 64359	0 65983	0 66918		
2	5	0 56721	0 63862	0 66194	0.67314	0 68028		
3	0	0 60500	0.65709	0 67406	0 68244	0 68743		
4	0	0.65165	0.68125	0 68996	0 69428	0 69686		
5	0	0 68712	0.69718	0 70050	0 70216	0 70315		
6	0	0.71071	0 70891	0 70831	0 70801	0 70783		
8	0	0 74368	0 72568	0 71955	0 71646	0 71460		
10	0	0 76635	0 73755	0 72757	0 72252	0 71947		
15	0	0 80237	0 75727	0 74106	0 73275	0 72771		
20	0	0 82458	0 77012	0 74997	0 73956	0 73321		
25	0	0 84017	0 77956	0 75660	0 74465	0 73733		
30	0	0 85195	0 78699	0 76186	0 74870	0 74062		
40	0	0 86896	0,79821	0 76990	0 75493	0 74570		
50	0	0 88092	0 80655	0 77595	0 75964	0 74954		

Table 1

	Table 2				Table 3									
ELEMENT	VALUES g, VS	. r FOR n = 2		LLEMENT	VALUES g, VS	r FOR n = 4					Table 4			
	ĸ									ELEMENT V	ALUES g _k VS.	r FOR n =	D	
r	g ¹	g ₂	r	ц ₁	g 2	5 g 3	54	r	\mathbf{g}_1	g2	g ₃	g 4	ę́ ۶	g ₆
15	1.71741	1.14494	1 5	1.17575	1 57792	2.36688	0.78383	15	0 90519	1,50478	2.29776	1 53184	2.25717	0 60132
2.0	1.95664	0.97832	2.0	1 33862	1.41661	2 83323	0 66931	2 0	1 01262	1 43227	2.58638	1 29319	2 86453	0 50631
2.5	2.15923	0 86369	2.5	l 4552o	1.30511	3.26278	0 58210	2 5	1 08328	1.37541	2.83408	1.13363	3.43853	0 43331
30	2 33754	0.77918	3.0	1 54785	1.22174	3 66522	0 51595	3 0	1 13585	1 32997	3.05407	1.01802	3 98991	0 37895
4.0	2.64575	0.66144	1 0	1 69225	1 10269	4.41076	0 42306	4 0	1.21009	1 26089	3.43742	0 85936	5 04356	0.30417
5.0	2.91069	0 58214	5.0	1 80457	1 01973	5.09863	0 36091	5 0	1.27012	1,20972	3,76900	0 75380	6 01859	0 25522
60	3 14625	0 52438	ь О	1 89737	0 95736	5.74417	0.31623	ь 0	1.32369	1 16949	4 06475	0 67746	7 01693	0.22062
8 0	3.55765	0 44471	8 0	2 01083	0 86783	6.94268	0 25585	8 0	1.39778	1 10883	4.38216	0.57277	8.87062	0 17472
10 0	3 91465	0 39147	10 0	2 10612	0.80511	8.05105	0.21661	10 0	1 45493	1 06406	5 03129	0 50313	10 64057	0 14549
15.0	4 66326	0 31088	15 0	2 39248	0 70116	10 56247	0 15950	15 0	1 55926	0 98749	5 97114	0.39808	14 81236	0 10395
20.0	5 28623	0 26431	20 0	2.56209	0 64141	12 82873	0.12810	20 0	1.63438	0 93665	6.75001	0.33750	18 73328	0 08172
25 0	5 83095	0 23324	25.0	2 69962	0 59731	11 93037	0 10798	25.0	1.09302	0 89911	7 42817	0 29713	22 47764	0.06774
30 0	6.32095	0.21070	30 0	2 81624	0 55368	15 91018	0.09387	30 0	1 71279	0 86957	8 03585	0 26786	26 08704	0.05809
40 0	7.18673	0,17967	10.0	3 00878	0 51508	20.00321	0,07522	40 0	1 82203	0,82496	9 10416	0,22760	32,99840	0 04555
50 0	7 91620	0 15892	50.0	4.16591	0.48068	24.03380	0,06332	50.0	1.88508	0 79197	10 03540	0 20072	39 59844	0 03770

lable 5 FLENENT VALUES g, VS r FOR n = 8

r	g ₁	g ₂	g ,	g,	g ç	g ₆	g 1	g 8
15	0.74087	1.40995	2.05938	1 66099	2 491 18	1 37291	2 11190	0 49392
2.0	0.81439	1 38835	2 23239	1.47790	2 95580	1.11610	2.77668	0 40720
25	0 86126	1.36553	2,37027	1 35099	3 37746	0.94811	i.4138l	0 34451
3 0	0 89584	1 34524	2 48706	1 25598	3 76794	0 82902	1 03569	0 29862
4 0	0.94606	1 31179	2 68086	1 12028	4 48113	0 67021	5 2471n	0 23652
5 0	0 98253	1 28532	2,84053	1 02576	5 12882	0 56831	6 12657	0 19651
6.0	1.01122	1.26357	2 97786	0 95479	5 72871	0.19631	7.58141	0 16854
8.0	1 05510	1.22929	3 20852	0 85308	6 82462	0 40106	9 83427	0.13189
10 0	1 08835	1 20283	3,40046	0.78201	7.82008	0 34005	12 02828	0.10884
15.0	1 14784	1 15526	5 78222	0 60316	10.02244	0.25215	17.32888	0 07652
20 0	1.18981	1.12199	4 08218	0 59-87	11 95741	0 20411	22 43971	0.05949
25 0	1 22245	1 09648	4 33352	0 54860	13.71510	0 17334	27 41201	0 04890
30.0	1 24926	1 07585	4 55208	0.51144	15.34328	0 15174	32 27546	0 04164
40 0	1 29196	1.04369	4 92325	0 45795	18 31782	0 12308	41 74756	0 03230
50 0	1 32550	1 01909	5.23531	0 42039	21.01954	0 10171	50,95444	0 02651
	lable 6	i						

ELEMENT VALUES $g_k = VS - r = IOR = 10$

r	S 1	# 2	ية ³	g 4	g s	g 6	g,	R 8	۴o	អ _ា ព
15	0 62715	1 31379	1 86515	1.69911	2 35274	1.56817	2.51899	1 24182	1 96987	n 11861
2 0	0 68114	1 3193;	1.97242	1 57811	2 05761	1.32880	3 15668	0 98000	2 63816	0 34071
2.5	0 71439	1 31581	2 05366	1 19074	2 92117	1 16815	3.72671	0 82139	3 28901	0 28581
3.0	0 73819	1.31032	2 11973	1 42297	3 15623	1 05207	4 26876	0 70653	3 93018	0 21622
4,0	0 77290	1 29881	2 22519	1 32259	3 56714	0 89186	5.29022	0.55627	5 19479	0 19325
5 0	0 70749	1 28830	2 30897	1 24083	3 92437	0.78187	6,24901	0 46177	6 44102	0 15952
5 O	0 81663	1 27899	$2 \ 37918$	1 19344	4 24348	0 70725	7 16047	0 39652	7 67344	0 13612
8 0	0 84558	1 26331	2.49390	1 10962	4 80309	0 60039	8 87680	0 31173	10 10589	0 10571
10 0	0 86728	1 25048	2 58674	1 04865	5 28993	0.52800	10 48632	0 25867	12.50418	0 08671
15.0	0 90563	1 22603	2.76557	0 94609	6.31108	0.42071	14 19116	0 18437	18 38974	0.06038
20,0	0.93237	1 20796	2.90155	0,87922	7 15914	0.35796	17.58407	0 14508	24 15838	0 04552
25 0	0,95299	1.19360	3.01289	0 83044	7.89853	0 31594	20.76068	0 12051	29.83899	0.03812
30 0	0 96982	1.18166	3.10794	0.79247	8 56169	0 28539	23 77389	0 10360	35 41879	0.03203
40.0	0 99544	1,16250	3.26626	0 73583	9 72865	0.21322	29 43279	0 08166	46 49869	0 02491
50 0	1 01720	1.14738	3 39648	0 69449	10 74733	0 21495	34,72410	0 06793	57 36778	0 02035

For convenience, ω_0' in (8) is given in tabular form in Table 1 for several values of r and n.

TABLES OF PROTOTYPE ELEMENT VALUES⁴

Tables 2 to 6 (p. 694) give element values for prototype maximally flat impedancetransforming networks for n=2, 4, 6, 8, and 10 reactive elements. After the designer has arrived at values for r, W, and n, the normalized element values can be obtained from the tables. Since the networks presented in Tables 2 through 6 are antimetric [3], i.e., half of the network is the inverse of the other half, only half of the network element values need be presented; the remaining elements can be computed from single equations [2]. However, for the convenience of the reader, all element values of the networks are presented in Tables 2 through 6.5

EXAMPLE

A numerical example will serve to demonstrate the use of Tables 2 through 6 and Fig. 3, and Table 1. Suppose that a designer desires a maximally flat impedancetransforming network for an r = 20 impedance ratio, over the band from 500 to 1000 Mc/s. The required fractional bandwidth is given by

$$w = \frac{f_b - f_a}{f_m} = \frac{2(f_b - f_a)}{f_b + f_a}$$
(10)

which for this example gives

$$w = \frac{2(1000 - 500)}{1000 + 500} = 0.667$$

From Fig. 3, it is found that this value of fractional bandwidth and impedance ratio lies between the n=2 and n=4 curves, so that n=4 reactive elements are necessary. (Two reactive elements would give a fractional bandwidth of only 0.5.) This will give an operating bandwidth somewhat larger than is actually required (w = 0.79), which is often desirable.

Next, from Table 3, for n = 4 reactive elements, the element values

$g_1 =$	2.56209
$g_2 =$	0.64144
$g_3 =$	12.82873
g4 ==	0.12810

are obtained; and from Table 1 [or (9)] ω_0' is found to be 0.77012. The computed transmission response of the network is graphed in Fig. 4.

SCALING OF THE NORMALIZED DESIGN

After a designer has selected a normalized design, the element values required for a specific application are easily determined by scaling. Let R be the desired resistance level of one of the terminations, while R' is

the corresponding resistance of the normalized design. Similarly, let ω_b be the radian frequency of the upper 3-dB frequency of the desired operating band, while $\omega_b'=1$ is the corresponding frequency for the normalized design. Then the scaled element values are computed using

$$R_k = R_k'\left(\frac{R}{R'}\right) \tag{11}$$

$$C_k = C_k' \left(\frac{\omega_b'}{\omega_b}\right) \frac{R'}{R} \tag{12}$$

$$L_{k} = L_{k}' \left(\frac{\omega_{b}'}{\omega_{b}}\right) \frac{R}{R'}$$
(13)

where $R_{k'}$, $C_{k'}$, and $L_{k'}$ are for the normalized design and R_k , C_k , and L_k are for the scaled design.

Acknowledgment

The computer program for the compilation of the tables of element values was written by W. Wiebenson and Miss E. Tessman.

E. G. CRISTAL Stanford Research Institute Menlo Park, Calif.

References

- KEFERENCES
 [1] G. Szentirmai, "Band-pass matching filter in the form of polynomial low-pass filter," *IEEE Trans* on Circuit Theory (Correspondence), vol. CT-11, pp. 177-178, March 1964.
 [2] G. L. Matthaei, "Tables of Chebyshev impedance transforming networks of low-pass filter form", Proc. IEEE, vol. 52, pp. 939-963, August 1964.
 [3] E. A. Guillemin, Synthesis of Passive Networks, ch. 11. New York: Wiley, 1957.
 [4] E. G. Cristal, L. A. Robinson, B. M. Schiffman, and L. Young, "Novel microwave filter design techniques," Seventh Quarterly Progress Rept., Section IV, SRI Project 4344, Contract DA 36-039-AMC-00084(E), Stanford Research Inst., Menlo Park, Calif., October 1964.

Tables of Stub Admittances for Maximally Flat Filters Using Shorted Quarter-Wave Stubs

Consider a symmetrical filter consisting of lossless shorted quarter-wave stubs spaced a quarter wavelength apart on a uniform, lossless line. The tables given here list the normalized characteristic stub admittances k_r necessary for a maximally flat response.

The insertion loss, when the filter is inserted between a generator and a load, both of which have real admittances equal to the characteristic admittance of the transmission line, is given by the relation

$$\frac{P_0}{P_L} = 1 + K_n \frac{\cos^{2n}\theta}{\sin^2\theta} \tag{1}$$

where n is the number of shorted stubs of length 1,

$$\theta = 2\pi l/\lambda \qquad (2)$$

$$\tilde{t}_n = \left(\frac{k_1(k_2+2)\cdots(k_n+2)}{2}\right)^2 \qquad (3)$$

Manuscript received June 25, 1965. This paper was presented in part at the IEEE G-MTT Sym-posium, May 20, 1963.

and where $k_r = Y_{0r}/Y_0$ is the normalized characteristic admittance of the rth stub.

For example, in a two-stub filter, n=2, and symmetry demands that the characteristic impedances of the two stubs be equal, hence

$$\frac{1}{k_1} = \frac{1}{k_2} \cdot$$

The insertion loss is given by (1),

$$\frac{P_0}{P_L} = 1 + \frac{[k_1(k_1+2)]^2 \cos^4 \theta}{4 \sin^2 \theta}$$
$$K_2 = [k_1(k_1+2)]^2/4.$$

The following tables give 10 log K_n , and the required normalized characteristic admittances of the stubs for various practical values up to ten stubs. Since the filters are symmetrical, only the values for the first half of the filter are tabulated.

Т	hree-Stub Filter	
10 log K3	<i>k</i> 1	k2
-12.728	0.100	0 200
- 0.944	0.300	0.600
+ 5.46	0.500	1.000
+10.138	0.700	1 400
+15.56	1.000	2 000
+21.156	1.400	2.800
+27.604	2,000	4,000
+31.904	2.5	5.0
+35.563	3.0	60

F	our-Stub Filter	
10 log K_4	k1	k2
5.17	0.1	0.293
+ 3.253	0.2	0.571
+13.329	0.4	1.109
+25.668	0.8	2.141
+35.909	1.3	3.395
+44.873	1 9	4.877
+56.734	3 0	7.568

Five-Stub Filter							
$10 \log K_{\delta}$	<i>k</i> 1	k2	k a				
+ 3.452	0.100	0.366	0.532				
13.577	0.200	0.694	0.989				
20.523	0.300	1.005	1.410				
26.002	0.400	1.304	L.808				
30,601	0.500	1.596	2.193				
38.16	0.700	2.166	2.933				
44.324	0.900	2.724	3.648				
54.172	1.300	3.819	5.038				
66.970	2.000	5 702	7.403				
77.874	2.800	7.829	10.058				

Six-Stub Filter						
10 log Ka	k_1	k z	k3			
+13.378	0.100	0.419	0 755			
25.469	0.200	0.774	1.329			
33.805	0.300	1.105	1 838			
40.388	0.400	1.422	2.314			
50.721	0.600	2.031	3.207			
58.863	0.800	2.622	4.055			
65.668	1.0	3.202	4.878			
76.755	1.4	4.343	6.487			
85.687	18	5.468	8.045			
96 571	2.4	5 141	10.359			

Seven-Stub Filter								
$10 \log_{10} K_7$	k_1	k_2	k s	k4				
24.63 38.78 56.24 77.83 85.77 104.521 125.521	$\begin{array}{c} 0 & 1 \\ 0 & 2 \\ 0 & 4 \\ 0.8 \\ 1.0 \\ 1.6 \\ 2 & 6 \end{array}$	$\begin{array}{c} 0.4556 \\ 0.8259 \\ 1.4949 \\ 2.7308 \\ 3.3269 \\ 5.0774 \\ 7.9395 \end{array}$	$\begin{array}{c} 0 & 9269 \\ 1 & 5687 \\ 2 & .6514 \\ 4 & .5506 \\ 5 & .4458 \\ 9 & .0398 \\ 12 & .2306 \end{array}$	$\begin{array}{c}1&1425\\1&8856\\3&1129\\5.2396\\6.2379\\9.1249\\13.7822\end{array}$				

⁴ The derivation of the tables is given in Cristal, et al. [4]. ⁵ The element values were obtained by a continued

⁶ The element values were obtained by a continued fraction expansion of the input impedance of the net-work. Because of a loss of significant digits in the con-tinued fraction expansion, the element values for second half of the network as given in the tables may be in error in the fourth decimal place. In those cases where the error is significant the element values of the second half of the network should be obtained from the element values of the first half of the network by the relationships given in Matthaei [2].